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Abstract

It is generallyclaimedthat object-basednodelsarevery suitablefor building

distributed systemarchitecturessince object interactionsfollow the client-

servermodel. To copewith the complexity of today'sdistributed systems,
however, we think that high-level linguistic mechanismsare neededto

effectively structure,abstractand reuseobjectinteractions.For example the

conventional object-orientedmodel does not provide high-level language
mechanismgo model layeredsystemarchitecturesMoreover, we consider
the messag@assingnodelof the conventionabbject-orientednodelasbeing
too low-level becausat canonly specify objectinteractionsthat involve two

partnerobjectsat a time and its semanticscannotbe extendedeasily. This

paperintroducesAbstract CommunicationTypes(ACTs), which are objects
that abstract interactions among obje&STs makeit easierto modellayered
communicatiorarchitecturesto enforcethe invariantbehavioramongobjects,
to reducethe complexity of programsby hiding the interaction details in

separatenodulesandto improvereusabilitythroughthe applicationof object-
orientedprinciplesto ACT classesWe illustrate the conceptof ACTs using
the composition filters model.

1. Introduction

The dynamic semanticsof object-orientedlanguagesare basedon the message
passingmechanismA messages a requestfor an objectto carry out one of the
object's operations.Since objects can only communicateby sending messages,
message passing is the basic means for creating executions in the system.

To copewith the complexity of today'sdistributedsystemswe think that high-level
linguistic mechanismsre neededo effectively structure,abstractand reuseobject
interactions.
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Originatingfrom the constructionof operatingsystems|argedistributedsystemsare
structuredn termsof vertical layers.Functionally,eachlayer communicatesvith its
peer-levellayer, althoughphysical data exchangeoccurswith the adjacentlayers.
The conventional object-orientedmodel does not provide high-level language
mechanismsto model layered system architectures.Moreover, we consider the
messag@assingmodel of conventionalobject-orientedanguagesas beingtoo low-
level because it can only specify communications that involve two partner objects at a
time andits semanticxannotbe extendedeasily. Mechanismdike inheritanceand
delegationonly support the constructionand behavior of objects but not the
abstractionof communicationamong objects. Thesemechanismghereforefail in
abstracting patterns of messages and larger scale synchronization among objects.

We haveappliedthe compositionfilters modelto abstractcommunicationsamong
objects. In this approach,the basic object model is extended modularly by
introducing input and output compositionfilters that affect the receivedand sent
messagegespectively. This mechanismenables software engineersto abstract
communications among objects into a first-class object called abstract
communicatiortypel (ACT). ACTs makeit easierto modellayeredarchitecturesto
enforcethe invariantbehavioramongobjects,to reducethe complexity of programs
by hiding the interaction details and to improve reusability through the applicdtion
object-oriented principles tACT classes.

This paper is organized as follows. The next section describes the problems in object-
oriented modeling which form the motivation for abstracting inter-object
communications.Section3 studiesthe backgroundandrelatedwork, including the
compositionfilters model. Section4 first givesa list of requirementdo effectively
integrate communication abstractionswith the object-oriented model. It then
introducesACTs and explains hoWwCTs can be expressed using composition-filters.
Section 5 presentsexamplesin 3 categories:examplesof inter-object invariant
behavior, inter-object synchronization, acwbrdinatedbehavior.Section6 evaluates

the ACT concept as presented and gives conclusions.

2. TheProblem Statement

The conventionabbjectmodelslack supportfor abstractingobjectinteractions.This
revealsitself througha numberof problemsthat are encounteredn objectoriented
software development:

1. Lack of Support for Meta-levels and Reflection:

Assumefor examplethat object A sendsa messageo a remote object B by
executing the message statement

1 The term abstract communication type is derived from abstract data typesgnefer to
both objectsand classesTerms ACT objectand ACT classwill be usedto referto an
object or class respectively.
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B.moveTo(X, Y);

For A, the details of this executionare abstracted.However, in reality, this
messagenust be interceptedby the underlyinglayer to determine for example,
the physical location of theeceiverof the message.

From the object-orientedmodeling perspective, this requires reflectior? of

messagesin messagereflection, the so-called messagereification operation
allowsthe meta-layetto procesghe explicit representationf the reified message
[Barber 89].

Conventional object-oriented methods [Booch 90, Coad&Yourdon 91a,
Coad&Yourdon91b, Champeau91, Rumbaugh91] do not provide supportfor
reflective systemdevelopmentConventionalobject-orientedanguagegsuchas
C++) provide only a limited or ad-hoc reflection [Madany et al. 92].

2. Complexityand Lack of Reusability The manageabilityof programsis affected
by the complexity of interactionsamongmodules.In object-orientedorograms,
the code for describingthe interactionsis distributed over the participating
objects.This causesa mixture of functionalandinteractionrelatedcode,which
affects both maintainability and extensibility.

Different classes may adopt identical patterns of communication and
synchronizationSimilarly, a single classmight participatein variouspatternsof
communication.Thus, hardcodingthe interaction patternsin a class severely
reduceghe reusability(of the classitself, and of the interactioncode).Especially
reuse through extension (subclassing) is an important issue.

3. Enforcinginvariant behavior:If the codethatimplementsthe invariantbehavior
is distributed over a numbef objects verifying the invariantsis far from trivial.
A single modulethat explicitly representghe interactionbetweenobjectsis an
attractive approach for ensuring the invariant behavior of this interaction.

2 A reflective systemis a systemwhich incorporatesmodels representing(aspectsof)

itself. This self representationéssually connectetb the reflectedentity, andtherefore,
makesit possiblefor the systemto answerquestionsaboutitself and supportactionson
itself. Reflectivecomputationis the behaviorexhibitedby a reflective system.The term
reflection was introducedby [Smith 82] as a techniqueto structureand organizeself-
modifying proceduresand functions. In [Maes 87] reflection was applied within the
object-orientedramework. Recentlya considerableamountof work hasbeendonein

object-orientedeflection,for example,in concurrentprogramming|ichisugi et al. 92],

operatingsystemstructuring[Yokote 92], compiler design[Lamping et al. 92] andreal-
time programming [Honda&Tokoro 92].
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3. Background and Related Work

This sectiondescribeghe backgroundandrelatedwork for ACTs. It consistsof two
main sections:in the first sectionthe related work in analysisand design,and
programmingmodelsis described.In the secondsectionthe composition-filters
modelis explained.We will applythe composition-filtersmodelfor expressingand
illustrating ACTs.

3.1. Related Work in Object Interactions

This section describesthe work that has been done with respectto object
interactionsWe first describethe attentionthat object-orientecanalysisand design
methods pay to modeling object interactions, and then one specific modeling
approachContracts Then we discuss twagrogrammingmodels respectivelyScripts
and reflective computation, how they can be applied for abstracting object
interactions.

Object-Oriented Analysis and Design M ethods

Most object-orientedanalysisanddesignmethodsmodelinteractionsamongobjects,
usually after identifying inheritanceand part-of relations Different termsare used
to expressobjectinteractionssuch as object diagrams[Booch 90], processmodel
[Champeaux91], messageonnectiongCoad&Yourdon91a], data-flow diagrams
[Rumbaugh91] and collaboration graphs [Wirfs-Brock et al. 90]. The Demeter
system[Lieberherr et al. 91] is a Computer-AidedSoftware Engineering(CASE)
environment which provides a tool to generate repeated operations called
propagationpatterns In addition,the Demetersystemincorporatesa designrule for
minimizing interactionsbetweembjects[Lieberherr&HoIIand89]3. Object-Oriented
Designby Coadand Yourdon[Coad&Yourdon91b] introducesa task management
component which aims at defining object interactions.

Object-orientedanalysisand designmethodsmodelinteractionsamongobjectsin a
way similar to object-orientedanguagesBasically, they definegraphstructureghat
represent execution threads and therefore these mdiavdthe samelimitationsas
programminglanguagesThe task managementomponent[Coad&Yourdon 91b]
can be considered asraduleto modelobjectinteractionsin this method,however,
there is no emphasis on using these constructs fopunmgse Moreover,it doesnot
provide solutions to the problems as presented in section 2.1.

3 Contractswere developedas a part of the researchactivities relatedto the Demeter

system.
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Contracts

In the areaof object-orientednodeling,the ideaof specifyingobjectinteractionsas
an explicit moduleis appliedby contractd [Helm et al. 90, Holland 92]. Contracts
areusedto specifythe contractualobligationsthata setof participantsmustsatisfy.

It is possible taefinea contract in order to make it more specific and fossibleto
include existing contractsin a new contract.In its first version[Helm et al. 90] a
declarativelanguagewasintroducedto define contractualobligations.In the second
version [Holland 92], however,a procedurallanguagewas adoptedinsteadof a
declarative one. In the following we refer only to the second version of contracts.

A contractspecificationincludesthe specificationof the participatingobjects,the
contractualobligations of all participants,the invariantsto be maintainedby the
participants and the method which instantiates a contract.

A contractcan be seenas an abstract class defining both abstractand concrete
methods for its participants. The abstract methods must be provided by the
participantsthemselvesThe concretemethodsof the contract(or its refinement)
override the concrete implementations of the participants. A comvagcalsodefine
variablesthat are sharedby all the participants.n orderto put a contractto use,a
conformancedeclarationmust be made which initializes the contractwith actual
participants Obviously,theseparticipantshaveto satisfythe contractualobligations

of the contract.An object may participatein severalcontracts.Contractsoffer two
alternatives: either the methods are implemented at the contract specificati@y, or
are distributed over the participating classes.

Contractsare primarily targetedas a designtool. Contractsare quite useful for the
implementation of coordinated behavior ahd abstractiorof objectinteractionsbut
are unable to reflect upon the actual messageinteractions between objects for
purposessuch as monitoring and manipulating messagesContractsare treated
differently from normal classes.Contractsalso do not addressconcurrencyand
synchronization issues.

Scripts

A languageconstructcalled scripts[Francez86] wasintroducedto abstractpatterns
of messageinto a module.A scriptis a parameterizegprogramsectionin which
processe®nrol in order to participate.The conceptof enrolmentis similar to the
subroutinecall mechanismwhereby the executionof the role in a given script
instance is dogical continuationof the enrolling processA scriptconsistsof formal
procesgparametersalledroles dataparametersaind a concurrentprogramsection
called thebody Processes can enrol in scripts by mearenadl in statements.

Scripts are program modulesand do not provide mechanismgor object-oriented
computing.Scripts,for example,do not allow usersof the systemto createseveral

4 Apart from the object-oriented language Sina.
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instancesbelongingto the samecommunicationmodule. Inheritanceor delegation
mechanismsare also not definedfor scriptstherebyresultingin a less systematic
reuse of communication abstractions.

Reflective Computation

In principle, languagesthat provide full reflection are able to representobject
interactions. Howevefull reflectivelanguagefiavecomplicatedsemanticandmay
bring unnecessanadditional complexity. One particular example of a restricted
reflectivelanguagéds MAUD [Aghaetal. 92]. Eachobjectin MAUD ownsthreemeta-
objectscalled a dispatchey a mail queueand acquaintancesThe sentand received
messagesire handledby the dispatcherand mail queueobjectsrespectively.The
acquaintancesbject containsa list of objectsthat may be addressedy its owner
object.In the MaUD languagepnecanimplementcoordinatedbehaviorby replacing
the meta-objectswith the objectsimplementingthe requiredprotocol. To install a
protocolfor an objectthe original mail queueand dispatchemustbe replacedby a
pair implementing the required protocol.

In MAUD, a sharedprotocol among objectsis implementedby mail queuesand
dispatchersCoordinatedbehavioris distributedamongmail queueand dispatcher
objectswhich are addedto all participating objects. Therefore designerscannot
define and reuse coordinated behavior as a single entity.

Apertosis an object-orientedreflective operatingsystem[Yokote 92] designedfor
open and mobile computing environments.Apertos introduces object/metaobject
separationin the operatingsystemdesign.An objectis associatedvith a group of
metaobjectsand a metaobjectdefinesthe semanticsof its object. An object can
changeits metaobject(or group of metaobjects)y migration. Although Apertos
providesa generalreflective systemframework, it doesnot emphasizeabstraction
and reuse of interactions among objects.

3.2. The Composition Filters M odel

We will first briefly introduce the components of the composition-filsgctmodel
andthenpresenthemin greaterdetail later. This computationmodelis adoptedby
the Sinalanguag@. In Sina, operationsand local variablesare called methodsand
instance variables respectively.As illustrated by Figure 1, a composition-filter
objectconsistsof two parts:an interfaceandan implementatiorpart. The interface
part dealswith incoming and outgoingmessageslt consistsof one or more input

S5 The early version of the Sina language was published in [Aksit&Tripathi 88,
Tripathi&Aksit 88, Aksit et al. 91]. This version introducedonly a simple filter
mechanismwhich was then called predicates The recentversionof the languagewas
published[Aksit et al. 92, Bergmanset al. 92]. Thesepublicationsdid not addresshe
issuesrelatedto abstractcommunicationtypes. The preliminary version of ACTs was
first published in [Aksit 89a].
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and output filters, optional internal and external objects and method header
declarations.

INput
Filrers

Exrernal
objecrs

InTerfAcE ParT

INTERNAlS Methods Externals

ImplemenTATION PRt

Figure 1. The interface components of the composition-filters object model.

Filters are controlled by condition$. Filter names,method headersand condition
names can be made visible to the clients of the object, however, their
implementationaredefinedin theimplementatiorpartandinvisible. In Figurel, a
possibleeffect of the input filters is shown.If a messageassegshroughthe input
filters it canbe further delegatedo internal objects,methodsor externalobjects.In
addition, Figure 1 depictsthe effect of outputfilters on the outgoingmessagesAll
the messagethat originatefrom methodexecutionswvithin the objectandare sentto
objectsthat are outsidethe boundarief the currentobjectpassthroughthe output
filters. Without filters, our model is very similar to the conventional object model.

The implementatiopart containsmethoddefinitions,instancevariabledeclarations,
definitions of conditions and an optional initialization operation. The
implementation part is fully encapsulated within the object.

The Interface Part

As an exampleof a simple class considerthe interface part of class Point We
present our examples following the Sina language notation.

6 In [Aksit et al. 92] conditions were calletiates
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class Pointinterface
comment This class implements a graphical point;
conditions
Initialized; /I this condition is only valid after the object has been initialized
methods
moveTo(Integer, Integerkturns Nil;
/I changes the coordinates of the point
getXreturns Integer;
/I reads the current x location of the point
getY returns Integer;
/I reads the current y location of the point
inputfilters
disp : Dispatch = { True=>inner.moveTo, Initialized => inner.* };
end;

Figure 2. Definition of the interface part of claBoint

The methodsthat areto be visible at the interfaceof the objectare declaredin the

interfacepart by methodheadersfollowing the keyword methods ClassPoint, for

instancedeclaregshe methodsmoveTo getXandgetYfor changingandreadingthe
coordinatesof the point respectively.The actualimplementationsof thesemethods
are encapsulatedavithin the implementationpart. An appropriatemessaganust be
sent to an instance of claBeintto invoke one of these methods.

An input filter specifies conditions for messageacceptanceor rejection and
determinesthe appropriatesubsequentction. The output filters handle outgoing
messagesnd are studiedin section4. After the keyword inputfilters, class Point
defines a single input filter calledisp of cIassDispatcﬁ using the expression

disp: Dispatch ={.... };
An input filter of classDispatchis usedto initiate executionof a methodwhenthe

correspondingmessagepassessuccessfully. The filtering condition, betweenthe
brackets "{" and "}", is specified as

{ True=>inner.moveTo, Initialized => inner.* }

On the left hand side of the characters'=>", a necessarycondition is specified,
denoted by the conditiadentifiers, True andlnitialized in this case.

7 The currentversionof the Sinalanguageprovidesa numberof primitive filters suchas
Dispatch Meta, Error, Wait and RealTime The Dispatch filter is explainedin this
section.The Meta filter will be studiedin section4. The Error filter is similar to the
Dispatchfilter butit doesnot providea methoddispatch;it raisesan error conditionif a
messagealoesnot passthroughthe filter [Aksit et al. 92]. The Wait filter is usedfor
synchronization[Bergmans et al. 92]. The RealTime filter is used for realtime
computationgAksit&Bosch 92]. Thesefilters can be usedas both input and/or output
filters. An input filter composeshe signatureof its object whereasan output filter
specifies how its object sends messages to other objects. An important featutieesfall
filters is that they are orthogonalto eachother and, therefore,they can be combined
freely.
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Conditions are similar to logical propositions.The namesof the conditions are
declaredn the interfacepart following the keyword conditionsandtheir definition is
providedin the implementationpart. Conditionsmay reflect the valuesof instance
variables,but may reflect externalvariablesaswell. In this example,the condition
Initialized is set tarue if the instance variables of claBsint have been initialized.

The received messagenmtchedwith the methodnamesspecifiedon theright hand
side of the characters'=>". The character™*" indicatesa wild-card or don't care
condition;if the messaganatcheswith any of the methodnamesprovidedby class
Pointit will beacceptedor execution An alternativecould beto list all the method
names explicitly. The pseudo-varial@er denotes the methods definedRyint

An optional internal clause may be usedto declare encapsulatebjects whose
behaviorcan be made(partially) visible on the interfaceof the encapsulatingbject
by filter specifications.Internal objects differ from instance variables, because
internalsare usedto composehe behaviorof the object,whereasnstancevariables
representhe local dataof the object. An externalclausemay be usedsimilarly to
declareexterior objectsthat are to be accessibldo this object. The useof internals
and externals will be explained when inheritance mechanisms are introduced.

The Implementation Part

The component®f the implementatiorpartare exemplifiedby classPoint asshown
in Figure 3.

Instancevariablesare declaredin the instvars clause.Instancevariablesare fully
encapsulatecind can be objects of arbitrary complexity. Class Point declares3
instancevariablesnamedx, y andinitializeDone Only the methodsdefinedwithin
the object'sclassmay accesghe instancevariablesdirectly, externalclients of an
object or even its subclasses cannot do this.

The implementationsof the conditionsare defined by messageexpressionsThe
structureof a condition implementationis similar to the structure of a method.
However,a conditionimplementatioralwaysresultsin a Booleanvalueandis free
of side effects

Theinitialization methodof an objectis definedin theinitial clause.This methodis
executed immediately after object creation.

The last componentbf the implementationpart is the definition of the methods.A
method consistsof a series of messageexpressions.The control flow may be
controlled by a set of standacdntrol statements
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class Pointimplementation
comment This class implements a graphical point;
instvars
X, y: Integer
initializeDone: Boolean;
conditions
I/l the conditions that were declared in the interface part are implemented here
Initialized:
begin return initializeDoneend,;
initial
begin initalizeDone:= false;end;
/I here the initial method is defined, which is executed immediately after object creation.
methods
moveTo(x, y: Integerpegin ....; initializeDone:=truend;
getX begin ....end;
getY begin ....end,;
end;

Figure 3. The implementation part of claB®int

M essage Evaluation by Filters

A filter is a first-classobjectthat determinesvhethera particularmessagés either
acceptedr rejectedandwhatactionis to be performedin eithercase Eachfilter is
declaredas an instanceof a filter class.A programmermay define an arbitrary
numberof filters for an object. Eachfilter canbe an instanceof an arbitrary filter
class.The completeset of input filters of an object determinesthe conditionsfor
message acceptance and determines which method weiXdoeitecuponacceptance.
Figure 4 illustrates how a message is evaluated by a set of filters.

This exampleconsistsof threefilters A, B andC. A receivedmessagen hasto pass
throughall the filters to resultin a successfuldispatch.Every filter consistsof a
numberof filter elementgtwo or threein this example).When a messages to be
evaluatedby a filter it will be checkedagainstthe elementsof the filter in left-to-
right order. A filter element consists of three parts:

RECEIVEd MESSAGE M Legend:
filrer element: o
&

e
'\De'eo‘ Q\\D
O NN
» = S
SRS
v iEElllll < stlecror
>
— TARGET
B: .\\\\\\\\>x< = [ﬁ%‘
v =< don’r care

— MESSAGE:
[—]
TARGET

v

conditions:
D TRUE . false

Figure 4. Message acceptance by filters.
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» A condition which specifiesa necessarycondition to be fulfilled in order to
continue evaluating a filter element;

* A matchingpart, in which the evaluatedmessages matchedagainsta defined
pattern;

» A substituting partwhere (parts of ) the message can be replaced.

In filter A, the selectorof the receivedmessagés matchedagainstthe selectorof the
matchingpart of eachfilter element;when the filter elementdoesnot matchthe
subsequent filter element is tried. In fil#&ralthough both of the conditions arae,
only the secondelementmatchesthe messagesince the selectorof the first filter
element doesot match.The messagés acceptedy filter A andcanthenproceedo
the next filter.

In filter B, matchingis not restrictedto the selectorof the messagebut involvesthe
targetof the messagaswell. The first elementof B doesnot matchbut the second
andthird elementsdo. Dueto the left-to-right ordering,the messagenatcheson the
second filter element and proceeds to the next filter.

Filter C demonstrateghe full expressivenessf filter evaluation. It introduces
substitutionof selectorsand targets.In the filter, the first filter elementdoesnot
match and the secondfilter elementhasa conditionthat is false The messagés
acceptedat the third elementand new values for the target and selector are
substituted.

Sincethereis no subsequertilter, the type of thefilter determinesvhatwill happen
with the messageCommonlythe last filter is of classDispatch which resultsin
delegation of the request message to its target object.

The conditions,the matchingand the substitutionas providedby filters, provide a
genericmechanisnfor selectingmessagebasedeither on their properties(selector
or target),or on somecondition specifiedby the receivingobject. They also support
the renamingof messageselectorsandredirectionof messagegby substitutingnew
targets).Basedon the acceptancer rejectionof a messagethe filter can perform
appropriate actions such as bouncing or blockingjectedmessag®er delegatingan
accepted message.

Inheritance and Delegation Through Input Filters

This sectiondemonstratefiow input filters can be appliedto realize basic object-
orienteddatamodelingtechniquessuchasinheritanceand delegationIn section4
we will explain how filters can be used to deflh€Ts.

In the composition-filtersmodel,inheritanceis not directly expressedby a language
constructbut is simulatedby input filters. In orderto inherit from a classaninternal

object must be declaredas an instanceof that class.Inheritanceis simulatedby

delegating messagedo the methods provided by this instance object. This is

exemplified by clasReferencePoinshown in Figure 5.

11
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class ReferencePoirinter face
comment This class is a subclass of class Point and is used
as a reference point for a set of other points
internals
myPoint : Point;// instance of the 'superclass'
methods
displayreturns Nil; // displays itself on the current point
inputfilters
disp: Dispatch= { True=>myPoint.*, True=>inner.* }
end;

Figure 5. The interface part of clag&eferencePoint

.

myPoiNT(PoinT)

ReferencePoINT

Class ReferencePointdeclaresan internal object myPoint of class Point and
introducesone method display. The method display makesthe graphical object

visible at the current location.

The filter disp of classDispatch containstwo filter elements.The condition True
precedingeachfilter elementmeanghatthetarget-selectopair(s)on theright-hand
side will always be checked. These two filter elements have the following meaning:

First filter element:

Thefirst elementof thefilter, myPoint.*specifiesthatall theincomingmessages

are delegatedo the internal object myPoint, provided that thesemessagesire
supportedby class Point. Since the methodsof Point are now available to
ReferencePointhroughan instanceof Point, classReferencePoininherits the
operationsof class Point. This techniquefor simulating inheritanceis also
referred to aslelegation-based inheritance

Whenan instanceof classReferencePoinis createdjts internal objectmyPoint
is also created.An important feature here is that instancevariables of the
superclassare only accessible through operations provided by the superclass.

The second filter element:

If the first filter elementdoesnot match with the messagethe secondfilter
elements evaluatedinsteadof delegatingto aninternal objectsuchasmyPoint
this filter elementdelegatesthe messageto the pseudo—variableinners. By

Apart from the pseudo-variablénner, two other pseudo-variablesself and server are
also availableas a meansof self-referenceThe variable inner allows direct internal
acces®on the objects'own methods self refersto the instanceof the classwhich defines
the method.If, for example,myPointrefersto self it will refer to myPointbut not
aReferencePointWe introducedinner to avoid infinitely nestedcompositions.Such
nested compositiomsanbe createdf only selfis used.In orderto referto the objectthat
originally received the messagerveris used as a target. Fexample jf myPointrefers
to server it will referto aReferencePoiniNote that serveris dynamicallyboundandis
equivalent to Smalltalkelf

12
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declaring inner as a target object, class ReferencePointakesthe methods
defined and implemented by itself available to its clients.

Note that sincethe filter elementsare evaluatedrom left to right, the first element
prevailsoverthe secondone.The orderof thefilter elementscanbe manipulatedo
bind messages to the desired tar%ets

Insteadof usinganinternal objectasa target,the programmemmay alsodelegatethe
incoming messagego an external object by declaring the target name in the
externalsclause.Becauseexternal objectsare not encapsulatedvithin the object,
they canbe sharedby otherobjects.In addition,contraryto the internals clause,an
external declaration does not result in automatic object creation.

4. Abstract Communication Types

4.1. Requirementsfor Abstract Communication Types

We haveidentified the following requirementgor defining effectivecommunication
abstractions:

1. First-class propertylo: If the communicationsamong objects show a well-
defined, meaningful, complex and/or reusable behavior, then they must be
explicitly represented bgneor more ACTs. The rationalefor this requirements
thatif communicationamongobjectsarewell-definedand meaningful,they are
likely to be problem domain entities; if they are complex, then they can be
managed by the object-oriented techniques such as encapsulation and inheritance;
if they are reusable,they must be defined as classes(objects) since classes
(objects) are the unit of reuse.

An ACT classmust be able to reuseother classesin the systemso that ACT
frameworks may be constructed.

2. LargescalesynchronizationACTs mustbe ableto expressvariousconcurrency
and synchronizationschemesWe believe that distributed applicationscan be
conveniently constructed usidgCTs. ThereforeACTs must haveich semantics
to expressvarious concurrency and synchronization mechanisms,such as
asynchronousommunicationspbroadcasts¢oordinatecdterminations distributed
concurrency control algorithms, etc.

3. Reflection upon messages ACT must becapableof reflectinguponmessages,
such as for monitoring, logging, affecting synchronization semantics and
message contents, or redirecting messages.

9 Thisis especially useful for solving name conflicts that are due to multiple inheritance.

10 First-class property means ART object is treated as an ordinary language object.

13
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4. Uniform integration of communicatiorsemantics ConsideringACTSs as objects
only is not sufficient. Communicatiormechanismslefinedby an ACT mustbe
uniformly integrated with the operationsimplementedby the participating
objectzfn ACT mustbe consideredhsthe extendeddentity of the participating
objects .

4.2. Basic Concepts

An ACT classis an ordinary Sinaclasswith the samesyntaxand semanticsWhat
makes a class akCT class is the way its behaviordemposedwith its participating
objects. An ACT class operateson first-class representation®of messagesFor
convertinga messagento its first-classrepresentationye introducea new filter

classcalled Meta filter. An instanceof Meta filter hasa structuresimilar to the
Dispatchfilter. The differencehereis thatif the receivedmessages accepteddy a
Metafilter it is first convertedo aninstanceof classMessagendthenpassedsan
argumentof a new messagedo the ACT object. The conversionoperationis also
known asreification. The ACT object can retrievethe necessarynformation from

the messageargument.An ACT can also modify the contentsof the messageby

invoking the operationsof classMessageFinally, an ACT can convertan instance
of Messagebackto a messageexecution.The detailedexplanationsof classMeta
filter andMessagere presented in sections 4.3 and 4.4, respectively.

ACTs can be further classified abstract sendetypes(ASTs) andabstractreceiver
types (ARTs)!2 ASTs and ARTs are responsible for abstracting one-way
communicatioramongobjects.Various ways of composingACTSs areillustratedin

Figure 6.

In Figure 6(a), eachobjecthasan outputMeta filter which interceptsand delegates
the outgoing messagedo the internal AST object. The internal ASTs that are

encapsulated by different objects may all belong to the sameakastrcecommon

protocols among objects. The AST object is responsiblefor abstracting the

communicatiorthat originatesfrom the senderbject. The sendermbjectinheritsthe

behaviorof the AST objectin object communication.This mechanismuniformly

integratesthe communicationsemanticsof the AST objectwith the senderobject.

Typical applications of this architecture are asynchromomsmunicationsencoding
messages etc.

11 The semanticsof an ACT object can not be integrateduniformly with the behaviorof
interactingobjectsjust by executingmessagealls. After eachmessageall, the context
of the original call (suchasthe pseudo-variablself) is changedAs a consequencehis
may result in a less reusablecoordinatedbehavior since the ACT object can not
polymorphicallyrefer to the participatingobjects.This is equivalentto the self-problem
as defined in [Lieberman 86].

12 Thisis anintuitive classification We found out thatin practicedesignersof ACTs tend

to talk aboutACTsthat send or receive messages.
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v@

Figure 6(a). Outgoing messages are delegated to an int&®ialobject.

Thearchitecturen Figure 6(b) is similar to 6(a), exceptthata sharedexternalAST
objectis usedinsteadof aninternalone.This allows communicatingobjectsto share
the behavior with a commastate.For example this AST objectcanstorethe names
of the receiver objects in a multicast implementation.

Figure 6(b). Outgoing messages are delegated to an external sh@feadbject.

In Figure 6(c), eachobjecthasan input Meta filter which interceptsand delegates
the received messages to the exteARil object.

The ART objectis responsiblefor handlingincomingmessages=xamplesare one-
way constraint solvers, security protocols, data handlersin atomic transactions,
decoding messages, etc.

Figure 6(d) combines the functionalitiesABT andART types into a single external
ACT object. This object handlesboth incoming and outgoing messagesTypical
examples are coordinated behavior multi-way constraint solvers distributed
algorithmsetc.
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Mera-filrer Mera-filrer
Disparch Disparch

Figure 6(c). Composition of an extern&RT object with the participating objects.

Mera-filter Mera-filrer
Disparch Disparch

Mera-filrer

Figure 6(d). Delegating all communication to &CT object.

4.3. Modeling Software Using ACTSs.

In our analysisanddesignmethod,we applythe ACT conceptasan object-oriented
modeling technique. As illustrated by Figure 7(a), during the class (object)
identification phase we explicitly search for classes that reprégeractionsamong
objects. Typically, these classes manifest themselvesas action abstractions,
distributed algorithms, coordinated behavior, inter-object constraints,etc. ACT
classes are not procedural abstractions but they are problem domain entitiese
a well-defined behavior.

In some cases, the analyst may fail in identifying ACT classes.After the

identification of inheritanceand part-of relationsamongclasseswe specify object
interaction patterns.If thereis a well-defined pattern among objectsand if this

patternis meaningfulin the problem domain, then we representthem as ACT

objects.As shownin Figure 7(b), in sucha casewe move the object-interaction
behavior (code) to aACT object.
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Many object-orientednethodsdefine associationdRumbaugh91] betweenobjects.
Most associationgepresentmessageexchangebetweentheseobjectsand can be
conveniently represented BACTSs.

‘ RF(,)LIRI'V\’IFNT SDFCIHCATION ‘

Ol.)J‘H‘,I v ACT . olyg:r ‘
idenification it identification
idenification

LY R
)

Figure 7. Identifying ACTs using (a) requirement specification and (b) object interaction
patterns.

(b)

We have applied the object-orientedanalysis and design techniquesto a large
number of applications[Aksit&Bergmans 92]. In various applicationswe could

benefitfrom mechanismghat could abstractobject interactions.One examplewas
the administrationsystemfor social security services[Greef 91]. In this system,
different objects were coordinating together to calculate payments. These
calculationswere the implementationsof laws and could be abstractecby ACTSs.

Anotherexamplewasthe chemicalprocesscontrol systemfor a distillation process
which was developedat the departmentof Chemical Engineering,University of

Twente[Jonge92]. In this systemvarious optimizationalgorithmswere distributed
to differentcomponentsThe algorithmswere solving somewell-defineddifferential

equationsand could be modeledby ACTs that implementedthese algorithms.
Distributed systemdesignclearly demonstratedhe needof abstractinginteraction
patterns[Aksit 89b, Bempt 91, Bergmans90, Dolfing 90, Zondag 90]. In the

distributed systemdesignwe could benefit from ACTSs, for example,in building

layered architectures dedicateddistributed concurrencycontrol mechanismsand
implementingsecurity protocols
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4.4. Class Meta-Filter

Instance®f classMetafilter areusedto reify messagethat passthroughthem.The
reified messageds passedas an argumentof the new messagego an ACT object.
Reification is needed tallow the ACT objectto invoke operationn the instanceof
MessageConsider the following example:

aMetaFilter : Meta = { aCondition fself.aMethod] aACT.aMethodOfARCT };

Thereis no differencebetweena Metafilter and otherfilters in the mannera filter
expressioris evaluatedHowever,whenthe messagés acceptedy a filter element,
which meansboth aConditionis true and the messages self.aMethod a new
messagds createdand the original messagebecomesthe argumentof the new
message.The new messageis composedof anacT.aMethodOfAacT(aMessage)
where aMessages the reified original messagelf the receivedmessagealoesnot
matchwith a Metafilter it is passedo the nextfilter. The semanticof classMeta
filter are presented in Appendix B.

4.5. Class Message

A messageén the systembecomesaccessiblavhenit is reified by a Meta filter and
passed to aACT as an argument of clabtessageClassMessagalefinesa number
of methodsfor accessingand changingthe receiver sendey server selectorand
argumentsf the messageln addition, it providesmethodsfor copying,reactivating
and replying to the message.The accessingand changing operationsare self
explanatory. We will now describe the other methods.

The methodtopyreturns a copy ahe messageThe senderof the copiedmessagés
undefinedunlessit is explicitly initialized. The reactivatingmethodfire causegshe
messageo continuewith its execution.The methodreply acceptsan argumentand
sendsthis argumentas a reply messageto the sender,stored internally in the
message. The interface methods of cessageare described in Appendix A.

4.6. Implementation | ssues

Currently,we are carryingout a researclactivity for the efficientimplementatiorof
composition-filtersWe are experimentingwith a Sinacompilerthat generate<C++
and Smalltalk code. In most cases,ACTs do not impose significant execution
overheadsincethe codethatis executedby an ACT canbe inlined into the object
that ownsthe metafilter. This is becauséhe nameof the ACT objectis explicitly
named in the filter initialization part.
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5. Examplesof Abstract Communication Types

5.1. Examplefor an Inter-Object Invariant Behavior: One-Way Constraints

An instanceof classReferencePoirit supposedo storethe referencecoordinatesof
a figure. When the coordinatesof the referencepoint are changed,then all the
dependantgraphical objects must be updatedaccordingly. Thus a figure can be
consideredas a constraintamongthe graphicalelementsthat form the figure. We
consider such a constrained behavior as a typical exampleA@Bn

To composethis constraintbehavior with ReferencePointFigure 8 extendsthe
interfacepart by declaringobjectfigure of classOneWayConstrainin the externals
clause and by adding a new input filter calbedstraintof classMeta

Disparch

figure
(ONEWAYCONSTRAINT)

=

myPoinT( PoinT)

ReferencePoint

class ReferencePoirinter face
comment this class is a subclass of class Point and is used as a reference point for a set of other
points ;
externals
figure : OneWayConstraint/ instance of the 'ART class'
internals
myPoint : Point// instance of the 'superclass’
methods
displayreturns Nil; // display itself on the current point
inputfilters
{
constraint : Meta= { True => [*.moveTo]figure.applyConstraint };
disp: Dispatch= { True=>myPoint.*, True=>inner.* }

end;

Figure 8. Redefinition of the interface part of claReferencePoint

ClassReferencePoimow has two filters enclosed by the charactgrsand"}". The
filter constraintof classMeta containsa singlefilter element.The condition True
precedingthe filter elementmeansthat the target-selectopair(s) on the right-hand
sidewill alwaysbecheckedThefilter elementconsistsof matchingand substitution
parts:
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Matching part:

The matching part of the filter "[*.moveTo]' meansthat all the incoming
messagesvith the selectormoveTowill match. The receivedmessagewill be
convertedto an instanceof classMessageif thereis a match.If the received
message does not match with Metafilter it is passed to the next filter.

The substitution part:

After the messageonversiorthe messagés sentasan argumentof the message
"figure.applyConstraint(aMessade)Object figure is declaredin the externals
clauseand is responsiblefor enforcing the constrainedbehavior among the

elementsof figure. After updatingthe dependantgraphical elements,figure

convertsthe messagdack to the executionform which then passeghoughthe

secondfilter called disp of class Dispatch The secondfilter dispatchesthe

message to its target.

class OneWayConstrairinterface
comment this class implements a one way constraint enforcing mechanism
methods
applyConstraint( Message gturns Nil; // this is the independent reference message
putDependants( OrderedCollection(Any)gurns Nil; // dependant objects are supplied
sizereturns Integer; // number of dependant objects
putConstraints( OrderedCollection(Block)eturns Nil; // store constraints for dependants
getConstraintsetur ns OrderedCollection(Block){ retrieve constraints
inputfilters
disp : Dispatch = { true => inner.* };
end;

Figure 9. The interface part of clagneWayConstraint

Class OneWayConstraints an ART and is a generalone-way constraintsolver
which providesthe consistencyof the dependantvariableswhen the independent
variable changes. In the following example varialglasdz are dependants af

y = f1(x) z = f2(x)

OneWayConstrainintroducesfive methods.The methodapplyConstraintacceptsa

single argumentof classMessageThis argumentis usedasthe independenvalue

for the one-wayconstraintsolver. The methodputDependantsacceptsan ordered
collectionof objectsof anytype andstorestheminternally asdependanbbjects.The
methodsize returnsthe numberof dependanbbjects. The methodputConstraints
accepts an ordered collection of instangleslassBlockasanargumentClassBlock
represents a Sina method implementation. Each block is a constraint expression to be
solvedand correspondgo the objectthatis storedat the sameindex location of the
orderedcollectionof dependantg-or example constrainton figure elementsanbe
expressed as

[moveTo( message.argument(1MX , message.argument(2)A¥)]
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Where messageis the argumentprovided to the method applyConstraint The
methodargument(i ) returnsthe iy, argumentof this messageAX andAY arethe
coordinates relative to the reference point.

The methodjetConstraintgetrieves the ordered collection Bfocks

Note that class OneWayConstraints a genericclassand can be reusedin other
applications.

In the following example class BoundedFigure inherits from class
OneWayConstrainandrestrictsthe coordinatef the figure within a certainframe.
BoundedFigureintroducestwo new methodscalled putFrame and getFrameand
overridesthe methodapplyConstraint The methodputFrameacceptsan argument
of classRectangleandstoresit asthe boundaryof the figure. The methodgetFrame
returns the current frame of the figure. The method applyConstraint of

OneWayConstrainis now overriddenbecausdhe allowed coordinatesof the figure

are restricted.

class BoundedFigurénter face
comment This class inherits from OneWayConstraint and extend it further by putting a frame;
internals
figure : OneWayConstraint;
methods
putFrame( Rectangler gtur ns Nil;
getFrame eturns Rectangle;
applyConstraint( Message gturns Nil;
inputfilters
disp : Dispatch = { true => {\inner.*, figure.* } };
end;

Figure 10. The interface part of claBoundedFigure

5.2. Examplefor Inter-Object Synchronization: Asynchronous M essage Send

The updatemessagesentby the constraintsolver can be executedasynchronously.
In Figure 11, classOneWayConstraints extendedby defining a new output filter
calledsendof classMeta This filter convertsthe outgoingmessage$o an instance
of Messageand passes it to the internal objeessageSendef classAsynchronous
Class Asynchronougrovides asynchronousnessagepassingand its definition is
given in Figure 12.

ClassAsynchronouss an AST and definesa single methodcalled messagelnput.
This methodacceptsan instanceof classMessageasan argumentandrepliesto this
messagémmediatelyby returningthe objectnil to the sender It then activatesthe
message by invoking the methfiidd on thismessagelNotethatthe matchingpartin
the dispatchfilter "[self.*]" will matchwith any messagehatis sentto an instance
of classAsynchronous

In Sina, unlessmutual exclusionis provided by a filter [Bergmanset al. 92],
methodsmay be executedconcurrently.This classthereforemay executeconcurrent
messagelnputvocations.
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ONEWAYCONSTRAINT

internals

messageSender: Asynchronous;

/I this is an instance of AST

methods
inputfilters

disp : Dispatch = { true => inner.* };
outputfilters

send : Meta = { [*.*] messageSender.messagelnput };

MESSAGE
Sender
(Asynchronous)

UPdATE MESSAGES

end;

Figure 11. Adding asynchronous message send
semantics to clagdneWayConstraint

class Asynchronousnter face
comment this class implements an asynchronous message passing mechanism;
methods
messagelnput ( Messagegjurns Nil; // message to be sent asynchronously
inputfilters
disp : Dispatch = { true => [self.*] inner.messagelnput};
end;

class Asynchronousmplementation
methods
messagelnput( originalMessage: Message);
begin
originalMessage.reply(nil);
originalMessage.fire;
end;
end;

Figure 12. The interface and implementation parts of clasgnchronous

5.3. Examplefor Coordinated behavior: Atomic Transactions

For computer-aidedengineeringapplicationsfigures can be processedo calculate
certain features such as volume, weight, etc. In the one-way constraint
implementationof Figure 11, dependantbjectsare updatedby sendingthem a
number of asynchronousmessagesDuring the update operation the figure is
inconsistent and, if there aotherprocessesaccessinghis figure, the resultsof their
computation may be inconsistent as well.

Atomictransactionshaveprovento be a useful mechanisnto preserveconsistency
[Haerder&Reuter83]. Serializability and indivisibility —are the two important
properties of atomic actions. Serializability means thagéveralactionsare executed
concurrently,they manipulatethe affecteddataasif they were executedserially in
someorder. Indivisibility meansthat either all or none of the atomic actionsare
performed.

The implementation of clagdneWayConstrairis extendedn Figure 13 by defining
a second output filter namedlomicof classMetato enforceconsistentpdatesThis
filter convertsthe messagehatis fired by messageSenad an instanceof Message
and passes it to the internal objatimicUpdateof classTransactionManager

22

www.manaraa.com



The interfacedefinition of classTransactionManagers given in Figure 14. Class
TransactionManagemherits from classCommitReceivand providestwo methods
calledsizeandtransaction The methodsizeacceptsan integerargumentand stores
it internally as the size of the transaction.The method transaction acceptsan
argumentof classMessageand executeghis messageogetherwith other messages
as an atomic transaction.

In our example class TransactionManagerhas an instance variable called
commitSendvhich implementsa commit protocol. This protocolis explainedwith
the help of Figure 15(a-d). In 15(a) commitSendreceivesthe transactionas a
message list froriransactionManageandfires them one by one.

ONEWAYCONSTRAINT

internals
messageSender: Asynchronous;
/I AST for asynchronous communication
atomicUpdate: TransactionManager;
/I AST for atomic updates
methods

Atomic updates

inputfilters
disp : Dispatch = { true => inner.* };
outputfilters

send : Meta = { [*.*] messageSender.messagelnput };
atomic : Meta = { [*.*] atomicUpdate.transaction },

}

. ATOMIC
end;

Figure 13. Adding atomic transaction semantics to
classOneWayConstraint

class TransactionManageénterface
comment this class sends a set of messages as a transaction;
internals
myCommitReceive: CommitReceivé;nherits from CommitReceive. It is used to commit or
[/l abort the transaction
methods
size(Integery eturns Nil; // size of the transaction block
transaction( Message ¢turns Nil; // an element of a transaction block
inputfilters
disp : Dispatch = { true => inner.* };
end;

Figure 14. The interface part of cla§gansactionManager.
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iNpuT(MessageList)
—>

MESSAGE . fIRS Q
TRUE/ AISE

commitSend

commitReceive Obyecrs

Figure 15(a). Transaction starts.

The receiverobject mustincorporatean ART of classTransactionManagerClass
TransactionManageinherits from class CommitReceivavhich is responsiblefor
handlingtransactioncommitand abort messagesWhena messagés first received
by CommitReceiveit goesfrom the idle to the commitpendingstate,and returns
true as shown in Figure 15(d).

As shownby Figure 15(b), if all the responseto commitSendare true, then the
transaction commits.

In Figure 15(c) is shownthat when a messages returnedas false the transaction
aborts.During the commitpendingstate,if CommitReceivesceivesa new requestit
returnsfalseand thus causes the abortion of the corresponding transaction.

if All ReTurNed TRUE THEN Q
COMMIT Q

&
04%_}

commiTSend

commitReceive Objecrs

Figure 15(b). If all succeed then transaction commits.
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if one reTurned false Then Q

N
Q
N

Q Abort Q
commitSend

Figure 15(c). If one fails, then the transaction aborts.

commitReceive Objecrs

o/,,}

RECEIVE] MESSAGE/RETURN TRUE

COMMIT/PERMANENT

ADbORT/REMOVE

ReCEivEd MEssAGE/RETURN false

Figure 15(d). The state transition diagram of cl&&smmitReceive.

Objectsthat require transactionalbehavior must incorporatean instanceof class
TransactionManageasan ART. ClassAtomicPoint shownin Figure 16, represents
the dependardraphicalpointswhich areto be updatedvhentheir referencepointis
changed.This classinherits from Point and delegatesany moveTomessages an
instanceof Messagedo its internal objectatomic of classTransactionManagerThe
secondfilter dispatchedo the internal objectsmyPointand atomig if the received
message passes through it. Since TransactionManager inherits from class
CommitReceivé responds t@aommitandabort messages.

class AtomicPointinterface
comment This class makes point an atomic point;
internals
myPoint : Point;
atomic: TransactionManager;
inputfilters
makeAtom: Meta = {true=> [moveTo] atomic.commitinput};
disp : Dispatch = { true => atomic.abort, atomic.commit, myPoint.* };
end;

Figure 16. The Interface part of claggomicPoint

6. Evaluation and Conclusions

To illustrate the useful featuresof ACTs, we presentedexamplesin 3 categories:
examples of inter-object invariant behavior, inter-object synchronization, and
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coordinatedbehavior.Figure 17(a) showsthe relationsamongthe classesasdefined
in this paper. Figure 17(b) organizes these classes into a layered architecture.

In this sectionwe analyzethe composition-filtersapproachwith respectto the
problemsandrequirementsve identified in section2 and4.1, respectively First we
discusshow ACTs provide solutionsto the problemsin section2, and how this is
illustrated by the examples in the previous chapter.

1. Lack of Support for Meta-levels and Reflection: ACTs can be used for
interceptingand manipulatingmessagednterceptionof messagess achievedoy
the input and output filters of an object, whereasmanipulationof messagess
made possibleby Meta filters, since thesdransform messagesnto first-class
objects.This will allow the softwareengineerto model and implementlayered
architecturesand extendthe messagepassingsemanticsof the object-oriented
modelif neededFigure 17(b) showsthe layeredarchitectureas definedin this
paper.

2. Complexity and Lack of Reusabili§«CTs can makehe complexityof programs
manageabldy movingthe interactioncodeto separatanodules.This allows for
reducing the number of inter-module relations and hidimgmunicatiordetails.
Classes OneWayConstraint Asynchronous and TransactionManager for
example represeninter-objectinteractions.The detailsof theseinteractionsare
abstractedby the methods.Note that OneWayConstraint Asynchronousand
TransactionManageare generic classes and may be used in various applications.

Programmersmay apply object-orientedtechniques,such as inheritance and
delegationto achievea more systematiaeuseof thesecomponentsinheritance
mechanismswill allow softwareengineergo constructapplication frameworks
for different communicationprotocols. For example,constraint-basedystems,
distributed concurrency control and recovery protocols, security protocols,
distributedschedulingand optimizationalgorithms,etc. can be expressedising
ACTs. The softwareengineercantailor theseframeworksfor his/herparticular
needs. Properly design&CTs can be highly reusable.

As illustrated by BoundedFigure ACTs can be extendedthrough the use of

inheritance. Another possible extension could be to subclass
TransactionManager for instance, to implement weak atomicity for some
actions. Thus, the implementationof ACT classescan be changedwithout

affecting the participant objects. For example the implementationof class
TransactionManagerould be changedto two-phasecommit protocol without

affecting the instances of cla®neWayConstraint

3. Enforcing invariant behavior: It is easierto enforce the invariant behavior
amongobjectsif thereis a module explicitly representingthis behavior. For
example, constraints among objects are enforced by a single class
OneWayconstraintOtherwise, all the interacting-codenongdisplayobjectshad
to be taken into account.
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Figure 17. Example classes (a) relations among classes
(b) classified into layers of abstractions.

We will now evaluateACTs with respectto the requirementghat were statedin
section 4.1:

1. First -classproperty: ACT classesare first-classmodulesbecausehey are just
like other SinaclassesWhat makesa classan ACT classis thatit manipulates
messagess first-classobjects,and the way it is composedwith other classes.
Inheritanceand/or delegationof behavioris providedfor ACT classesthrough
the use of composition-filters.

2. Large scale synchronization: ACT classes can implement large-scale
synchronization among participating objects. A typical example is class
TransactionManager Sina provides mechanisms for concurrency and
synchronization since it is a concurrent language [Bergmans et al. 92].

3. Reflectionupon messagesThrough the use of classesMeta and Message
messagesanbe manipulatedecausehey are abstractedy the methodsof class
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Message For example, classes OneWayConstraint and BoundedFigure
manipulatethe argumentsof messageso enforcethe consistencyof dependant
objects.

4. Uniform integration of communicationsemantics:ACTs are incorporatedwith
the participating objectsby using composition-filters.Since composition-filters
alsoarethe basicmeansfor expressinghe basicobject-orientecddataabstraction
mechanismsACTs are fully integrated with the object model.

The contribution of this paperis to introducethe conceptof ACTs. Realizationof
ACTs is madepossibleby the introductionof a new type of filter: called Meta
Currently, we are experimentingwith ACTs in building object-orienteddistributed
transactionframeworks [Tekinerdogan92]. We also investigate mechanismsto
improve fault-tolerance,for example,by defining ACTs that managereplicated
objects transparently.The conceptof ACTs as introducedin this paper can be
effectively used with the other filter mechanismspresentedin our earlier
publications.The composition-filtermechanisnis adoptedby the Sinalanguageand
an ICASE environment callgdbjectComposePool&Bosch 92].
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Appendix A - Specification of class M essage

In this appendixthe relevantmethodsof classMessageare described As described,
classMessagehasfields for the receiverobject,the sendey the server the method
selectorand thearguments
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¢ getReceivereturns Any;
returns the receiver of the message object.

* putReceiver(AnyYyeturns Nil;
changes the receiver of the message object into the argument object.

* getSendereturns Any;
returns the object that sent the message.

¢ putSender(AnyJeturns Nil;
changes the sender of the message into the argument object.

* getServereturns Any;
returns the object thatriginally receivedthe messagehut thatdelegatedt to the
receiver object.

¢ putServer(AnyYyeturns Nil;
changes the server of the message into the argument object.

¢ getSelectoreturns Identifier;
returns the method identifier that is stored in the message.

¢ putSelector(ldentifierjeturns Nil;
changes the method identifier into the argument identifier.

¢ getArgument(Integemeturns Any;
returns the argument refered to by the integer argument.

¢ putArgument(IntegerAny) returns Nil;
changesthe argumentreferedto by the integer argumentinto the argument
object.

* copyreturns Message;
returns a copy of the message.

* fire returns Nil;
activatesthe messagelf the receiver object is not changed,the messageis
evaluatedby the subsequenfilter. Otherwiseis the messagesentto the new
receiver object, where it will be evaluated as any message.

¢ reply(Any) returns Nil;
sends the argument object as a reply message to the sender of the message.

Appendix B - The Semantics of the M essage System

This appendixgives a formal descriptionof the messagesystem.A messages
represented as

msg=(0,,0,Q,0[a,..., ]
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Where, O, is the senderid and O, is thereceiverid, O, is the serverobjectid, O is
the message selector, e{raj_,...,an] are message arguments.

The input filter set consists of filtels , ,...,F; | andthe outputfilters setconsistsof
filters F,,,...,F, . Eachfilter F hasa messagejueueMQ_ . A filter of class
Error is alwaysaddedasa last filter Fim1 generatingan error if a messageas not
dispatchedsofar. A filter of classDispatchis alwaysaddedasa lastfilter F, ., to
send a message once it passedrtiogitput filters.
In appendix Amethodsof classMessageavereintroduced Now we will describethe
semanticof the methodscopy; fire andreply. In A(1), the methodcopyresultsin a
new messageavith the samestructureexceptthe senderobjectis now replacedby
nil_obj. The methodfire asdefinedin A(2), putsthe messagén the messageueue
of the next filter. This filter is determinedaccordingto the declarationorder. The
senderof the fire messageeceivesil_obj asa resultof this invocation.In A(3), the
methodreply sendsits argumentas a reply messagédo the senderof the original
messageSimilar to the previousformula, the senderof the reply messageeceives
nil_obj as a result of this invocation.
copy - (nil_obj,0,,0,,0,[a,,...,a,])

A(2)

M =M U{ms
fire - QQRFM . QQR%:& { g
nil_obj
A(2)
whereQ;, is the reifying object
andF, is the reifying Meta filter

rep_obj [T - o,
nil_obj
A(3)

Eachmessagés removedfrom the messageueueof the currentfilter andevaluated
accordingto the algorithmasdescribedn section4. Thefilter caneitheracceptthe

message arejectit. In each case the filter will perform some action dependimigs

type. The actions performedby filters Dispatch and Meta are describedin the

following:

reply(rep_obj) - {

The function execut€msg is usedto startexecutionof the methodasa result of
filter evaluation.The Dispatchfilter is definedin A(4). If the receivedmessagds
acceptedandif the target of the messagés self, thenthe correspondingnethodis
executedlf, however the target objectis not self thenthe acceptednessagés put
in the messagejueueof the first filter of the target object. If the messagéds not
acceptedthenit is put in the messagejueueof the next filter. The Meta filter is

32

www.manaraa.com



definedin A(5). If the messages acceptedmsgis convertedinto msg'and msg'is
put in the message queue of the first filtethad specifiedACT. If the messagés not
acceptedthenit is put in the messagequeueof the next filter. The conversion
operationcreatesa new messagensg'with the currentobjectasthe senderthe ACT
objecta receiver and server the messageselector0 ,; as specifiedin the filter

expression and the original messagggas the argument of the message.

executémsg if accepted and sel O,
F (msg:Dispatch- { MQ, =MQ, U{ms§ if accepted and selt O,
MQg, =MQ. [{msy otherwise

A4)
where MQ, = MQ. of O,

MQ pcr = MQ ,cr O{msg} if accepted
MQg, =MQg O{ms§ otherwise
A(5)
where(self, ACT, ACT, 0 ,-;,[msd) = msy
and MQ; =MQ; of ACT

and ACT= O,

F (msg:Meta - {
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